Solar Powered
12 Volt Backup
System
This project is now just for reference and interest, as there are so many better ways to charge a battery using solar energy!
Solar
energy is the 'in' thing right now, so I thought I would get a tiny
piece of the action. I didn't want to pay 20,000 and have solar panels
all over my roof, but I did buy a small 40 watt panel so I could have a
play. I can always expand it later if need be. The following describes
how I built a basic solar power
system to provide some security lighting at night, and back up lighting
during a power cut. The ingredients required are of course a
suitable photovoltaic (PV) panel, a storage battery and a means of
controlling the energy into and out of the battery so that it stays in
good condition. The rest is all cables, fuses, switches and stuff like
that
Note:
This project is a work in progress and I'm still experimenting and
carrying out tests. Unfortunately winter is here and so it's difficult
to achieve full power, but I will continue to play around with it and
post the results here
The first task was to install the panel. The ideal place I thought was the garden shed roof as it faces south and catches the sun pretty much all day, being the last spot to end up in shadow. Now I don't like the idea of drilling holes all over my shed roof, so I came up with a secure mounting system that could be fitted by drilling just one small hole. I constructed a framework from rough sawn treated timber (19x38x1800mm), and fixed it to the underside of the panel using M6 25mm zinc plated roofing bolts, recessed into the wood (this is important). At the centre is an M8 75mm zinc plated cup sq bolt. The photo below shows how it was put together The diagonal batten is attached with wood
screws, ensuring first that the mounting bolt is central, and all the
sawn ends
are treated with wood preserver to give protection from the weather. When
the M8 nut is tightened on the inside of the shed (see photo below) the
two parallel battens are pulled against the roof by the
diagonal batten. Just enough tension is applied to
create friction between the parallel
battens and the roof (which is rough in texture anyway) to stop the
whole assembly being able to rotate. It's a good idea to use silicone
sealant around
the bolt to stop any water getting in. With this fixing method there is no
stress on the frame of the
solar panel at all as it is effectively just sitting on the wooden
battens. For larger panels, I suggest using the recommended mounting
hardware
I
couldn't get away with just one hole in my shed though. Two more were
required. One for the PV connectors to enter and another in the floor
for the outbound supply cable, and it wasn't long either before the
English weather did its thing. The clouds
came, the rains came and the winds came, but the little panel sat there
taking it all in its stride. I'm happy... so onto the next stage
The
battery used is an 88ah deep cycle type, also known as a leisure
battery. Any old car battery won't do, the reason being that car
batteries don't like being discharged to any great extent, that's why
they are constantly being charged by the alternator. They can supply
vast amounts of current for short periods when needed, for example to
turn the engine over, and relatively small currents for things like the
radio and small lights, but will never get depleted very much in
normal use. So running a car battery down is a bad thing. On the other
hand, a deep cycle battery is designed to run down a bit as it powers
various appliances and then be topped up again, that said, even the
voltage on these batteries should not be allowed to get too low and as
such, this should be monitored. 11 volts seems to be the acceptable
minimum before damage occurs. Conversely, they should not be
overcharged either as this can
harm them too. 14.4 volts is deemed the maximum safe limit. So within
these extremes, a deep cycle leisure battery should survive well. I had
thought about building a circuit to automatically
disconnect the battery if its voltage fell too low, but I'm hoping that
the modest power demand of my system will negate the need for this, and
any energy used will be replaced during the day. Even in the dreadful
English weather!
An important part of any renewable energy system is the charge controller. This maintains the battery voltage at its optimum level. Commercially made units are usually processor controlled PWM (Pulse Width Modulated) types which vary in price depending on features and current handling. Here though, I've adopted the much simpler method of shunt regulation, which may not be as efficient as PWM, but is effective and reliable. In this application, a shunt regulator relies on the fact that a solar panel can be short circuited without causing any damage. This amazing property is ideal, as it can be put to good use when designing a simple controller to charge a battery to an exact preset voltage level. The schematic is shown below The
circuit uses an LM393N
voltage comparator. The inverting input (pin 6)
is fed from an LM317L programmable regulator, its
output voltage being
set by R2, which is a precision multiturn preset. The non inverting
input (pin 5) samples the voltage across
the battery via the potential divider formed by two 10K resistors.
As these resistors are equal in value, the voltage at pin 5 will always
be half that of the battery, whatever it happens to be. Set up couldn't
be easier. Simply adjust the voltage at the test point (TP) to half
the desired battery voltage and the circuit will do the rest. So for
example, to charge the battery to 13 volts, you would set R2 for 6.5
volts at the test point.
The adjustment range of R2 is 1.25 volts to 7.5 volts. The formula for calculating the output of the LM317L is: Vout = R2 R1 + 1 x 1.25 Now if the battery voltage is below 13 volts, pin 5 will be less than 6.5 volts and so there will be no output from the comparator. As the battery charges, its voltage will rise towards 13 volts at which point pin 5 will also be 6.5 volts. Because of the extremely high gain of the IC, pin 5 only has to go an immeasurably small amount higher than pin 6 to make the output (pin 7) go high. This turns on the IRF540A MOSFET which connects the 2R2 resistor across the solar panel, effectively dumping its energy into a resistive load instead of the battery The MBRF1645 is a 16 amp schottky diode that prevents the battery from being 'shunted' by the 2R2 resistor along with the solar panel. It also prevents the battery putting volts back into the panel, though most panels have diodes built into them anyway. This component is not critical as long as it's up to the job. Normal silicon diodes can also be used, but because they have a higher voltage drop across them it's best to use schottky types as we want to utilise as much energy as possible. The IRF540A MOSFET is rated at more than 20 amps so overall the circuit should quite easily handle the low amount of power demanded of it, and cope with additional panels being added later. The 2R2 resistor should be able to disipate the energy from the solar panel without getting too hot. I used a 100 watt wirewound It's worth mentioning a bit about the LM393N. It is not an opamp. It can be thought of like an opamp as far as its inputs are concerned, but the output (pin 7) is very different. When it's off, as in when the + input is lower than the - input, the output will be internally grounded, effectively connecting the gate of the MOSFET and the lower end of the 10K resistor to earth. But when the + input goes higher than the - input, the output will 'float' open circuit, letting the 10K resistor feed the gate, turning it on. A nice feature of the LM393N is that it has a low current consumption. This is important in 'eco friendly' systems where we don't want to waste anything. The whole circuit, including the LM317L regulator, only consumes about 3.5mA. The low power part of the circuit was constructed on veroboard as shown below. The output goes to the gate of the MOSFET The
IC is a dual device, but as only one comparator is used here, the other
is shown greyed out. On the actual veroboard, the unused pins were
folded under the body of the IC out of the way (It's good practice to
solder unused input pins together). The reason
I did this is so the copper tracks can pass from one side of the board
to the other unhindered. It just makes designing easier. I fed the
veroboard via a small fuse in case of component failure, though I
suspect veroboard tracks would make good fuses anyway!
The battery is housed in the shed along with the charge controller which is mounted on a wooden board (an old pine shelf). This also serves as a central hub where all the cables converge and connect from the solar panel, battery and various loads. See photos below The
left hand photo shows the mounting board with, from left to right, an
electronic timer, battery cut off switch/fuse and the enclosure that
houses the control circuit. At the top is a heatsink with the schottky diode
and MOSFET bolted onto it. As yet this hasn't got very warm at all, but
I should wait until summer before making further comments! Below that
is the 2.2 ohm 100 watt shunt resistor. The right hand photo shows the
cover
removed from the control circuit. The multiturn preset is accessible
through a hole on the underside and the test point for setting the
battery full voltage is located at the lower end of the veroboard
The positive supply cable from the battery goes straight to the fused switch before it goes anywhere else. A normal mains type is used here which is perfectly adequate for low voltage systems, plus also, domestic fuses are cheap and available everywhere. The terminal block at the bottom connects everything together with the solar panel entering at the right and battery connected at the left. In between are the outputs, one for a shed light, the others for the security light and house. Only the security light is switched on and off by the timer. Power is carried from the shed via a large twin & earth cable. The two main conductors feed the house, while the switched supply for the security light is carried down the earth (with negative as common). The two supplies are separated inside a weatherproof junction box The
shed light uses a 12 volt CFL bulb. These are relatively expensive to
buy, but are nice and bright. Note that CFLs come in various colour
temperatures ranging from 2700K (warm) to 6400K (cold white).
Personally I absolutely cannot stand 6400K types as they give a horrid
light reminiscent of being in a nightmare! The warmer the better for
me. The one shown here is 4200K (mid white) which is still not exactly
what I'd like to relax under, but it's fine for shed lighting. There
are high powered versions available but I tend to stick to about 11
watts to keep the current drain at a reasonable level.
I must just mention the timer. Electronic timers that work on 12 volts are pretty rare, but a good alternative is to use a battery powered programmable thermostat. I take no credit for this having discovered it on the REUK website. Basically, the thermostat is modified by replacing the thermistor with a 10K resistor so that the temperature always displays around 25˚C. Then you just set the on time at 35˚C and the off time at 5˚C (the upper and lower limits) and it will act as a timer. And as it runs off a couple of AAA batteries it doesn't drain any current from the system Safety: I tested the integrity of the cabling by increasing the fuse rating at the battery and then deliberately short circuiting the supply at the farthest point. The fuse blew easily. It's interesting to note that the solar panel is still regulated by the charge controller and will continue to provide power even when the battery is disconnected, though the available current depends on the amount of light of course. This may not be a good thing for some types of equipment so it's something to be aware of. The farthest point is also fused for safety Update
It's
coming up to a year now since my small solar power system has been in
service and
it has performed superbly. The only modification recently carried out
was to add
a 1u capacitor from the gate of the MOSFET to ground. This was to cure
a ticking noise caused by the MOSFET switching on and off that could be
heard from audio equipment connected to the system during day time
charging. The charge voltage stabilisation is much improved too. Also, instead of using the test
point, and with sun permitting, I've found that setup
can be achieved more easily and
accurately by connecting just the solar panel without the battery or
load and then adjusting R2 for 13.8V across the battery supply rail
(BATTERY+/- on the veroboard).
This also overcomes
any slight error caused by differences in the value of the two 10K
resistors (which by the way are now 47K for no particular reason!)
I've created another page that describes just the charge controller (with updates) which can be found here |